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1. Introduction

Our purpose is to demonstrate how the spectral triples of [5,33] constructed on such
fractals as the Sierpinski gasket or the harmonic gasket are indeed the limits, for the
spectral propinquity, of spectral triples on finite graphs which naturally approximate
these fractals. In short, the spectral triples constructed in [5] by Christensen, Ivan and
the second author for the Sierpinski gasket, and then, in [33], by the second author and
Sarhad, for a larger class of fractals built with C* curves, including the harmonic gasket,
a typical example of a measurable, fractal Riemannian manifold, can be described as
follows. They are infinite direct sums of spectral triples associated with each curve out
of which the given fractal is built. Alternatively, and somewhat heuristically, they can
be thought of as suitable limits of spectral triples attached to each natural pre-fractal
approximation, or “cell”, of the fractal. The key objective of the present paper is to make
precise and to rigorously establish the latter observation, using the spectral propinquity
introduced by the third author.

The spectral propinquity is a distance on metric spectral triples introduced by the
third author as part of a project to devise an analytic framework to discuss approxima-
tions of noncommutative geometric structures, from quantum compact metric spaces to
metric spectral triples, including Hilbert modules and group actions. Thus, the present
work provides new examples of applications of noncommutative metric geometry, and
other functional analytic methods in metric geometry, to fractal geometry. The results in
this paper are an example of an approximation of an analogue of a differential structure
by metric means, taking advantage of the generalization of differential structures given
by Connes’ spectral triples.

Our journey begins with a new form of geometry made possible by the duality between
compact Hausdorff spaces and certain commutative Banach algebras, called commutative
C*-algebras. Gelfand defined a (unital) C*-algebra 2 as a unital Banach algebra over
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C, endowed with an anti-multiplicative, conjugate linear involution a € 2l — a* € A
such that [|a*ally = ||a||;L, for all a € A, where ||-||5 is the norm on 2{. An example of a
commutative, unital C*-algebra is the algebra C(X) of all C-valued continuous functions
over a compact Hausdorff space X, equipped with the supremum norm. In fact, Gelfand,
Naimark and Segal proved that the category of Abelian unital C*-algebras with their
natural morphisms, called *-morphisms, is dual to the category of compact Hausdorff
spaces with continuous maps. Thus, studying the topology of compact Hausdorff spaces
is equivalent to studying commutative, unital C*-algebras.

All C*-algebras are *-isomorphic to a closed subalgebra of operators on a Hilbert
space, closed under the adjoint operation. In particular, C*-algebras are the natural
algebras for observables in quantum mechanics, or for the description of local observables
in quantum field theory. Moreover, via such constructions as C*-crossed-products or
groupoid C*-algebras, there are natural ways to associate noncommutative C*-algebras
to certain geometric situations where the spaces of interest may be highly singular,
such as the orbit space for minimal actions of Z on the Cantor set. Since the category
of Abelian unital C*-algebras is dual to the category of compact Hausdorff spaces, it
was then natural to generalize various constructions from topology, such as K-theory,
to all C*-algebras. This line of research has been very beneficial to both the study of
C*-algebras and to topology.

Since C*-algebras enable the study of noncommutative topology, it is natural to ask
whether other geometric structures could be extended to noncommutative algebras. Our
present work involves two such research directions: noncommutative Riemannian geom-
etry, and noncommutative metric geometry.

Connes proposes that Dirac operators on the L2-sections of the spinor bundle for
connected compact Riemannian spin manifolds can be generalized to possibly noncom-
mutative algebras with the structure of spectral triples, a form of quantum differential
structure. There is some amount of variation in the definition of a spectral triple, but
the following definition seems to contain the common traits of these objects, and is a
good starting point for the present work.

Definition 1.1 (/8,9]; see also, e.qg., [10]). A spectral triple (2, 3¢, D) consists of a unital
C*.algebra 2(, a Hilbert space # which is a left 2-module, and a self-adjoint operator
D defined on a dense linear subspace, dom (D), of 5 such that

(1) D+ has a compact inverse,
(2) the set of @ € A such that

a - dom (D) C dom (D)
and

[D, a] is closeable, with bounded closure
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is dense in 2.

In addition to cohomological information (in the form of a cyclic cocycle), Connes
then noted in [8] that a spectral triple (2, 5#, D) always induces an extended metric on
the state space of its underlying C*-algebra 2, by setting, for any two states ¢, 1 of 2,

mkp (i, ¥) = sup {|p(a) — ¥ (a)| : a € A,a = a™, ||[D, al|| ,» < 1}. (1.1)

He also observed in [8] that when D is actually the Dirac operator on a connected
compact spin Riemannian manifold, then mkp restricts on the space of points, i.e. pure
states, to the geodesic distance on the manifold.

In fact, the extended metric defined by Expression (1.1) is, in the classical picture of
the Dirac operator on a manifold or for the spectral triples from [5,33], a special case of
the Monge-Kantorovich metric, introduced by Kantorovich [18,19]. Thus spectral triples
provide one possible route to define an analogue of the Monge—Kantorovich metric within
the broader context of noncommutative C*-algebras.

Rieffel [51-53] started the study of noncommutative metric geometry, where the ba-
sic objects are noncommutative analogues of the algebras of Lipschitz functions over
compact metric spaces, called quantum compact metric spaces. Indeed, if (X,d) is a
(compact) metric space, and if f € C(X), then the Lipschitz seminorm of f is defined
as

La(f) =Sup{|f(r;)($_’;c)(y)| :m,yEX,a:#y},

allowing for the value co.

The Monge-Kantorovich metric, introduced by Kantorovich [18,19] in his study of
Monge’s transportation problem, is defined for any two Radon probability measures u,
v on X by

mie, (i) =sup | [ fau— [ fav] i fecooan <y a2
X X

It is an important metric, for instance, in probability theory and the study of the trans-
portation problem, in particular because it induces the weak* topology on the space
Z(C(X)) of Radon probability measures on X. Moreover, the map which sends any
point z in X to the Dirac probability measure at z becomes an isometry from (X, d) to
(Z(C(X)), mky,) — thus allowing one to recover the original metric d on X.

The state space of a possibly noncommutative C*-algebra is defined as the set of its
positive linear functionals of norm 1, and Rieffel used the fundamental properties of
the Monge—-Kantorovich metric as the starting point for the study of quantum compact
metric spaces. The actual definition of a quantum compact metric space has evolved as
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research on the subject has progressed, and seems to now settle around the following
notion.

Definition 1.2 (/8,51,52,36]). A quantum compact metric space (U,L) is an ordered pair
of a unital C*-algebra 2 and a seminorm L defined on a dense subspace dom (L) of the
self-adjoint part

sa(A)={acUA:a=2a"}
of 2 such that the following four conditions hold:
(1) {a € dom (L) : L(a) = 0} = Rly,

(2) the Monge-Kantorovich metric mky defined between any two states ¢, € .#(2) of
A by

mk. (i, %) = sup {l(a) — ¥(a)| : a € dom (L), L(a) < 1}

metrizes the weak® topology on #(%),
(3) for all a,b € dom (L), we have

ab+ba ab—ba
2 7 2%

€ dom (L),

and L satisfies the Leibniz inequality

ab+ ba ab — ba
max L (52) L (P52} <L@ Bl + lala L)

(4) {a € dom (L) : L(a) < 1} is closed for the topology induced by ||-||y on 2L.

Convention 1.3. In this paper, by convention, if L is a seminorm defined on a dense
subspace dom (L) of a normed vector space E, and if « € E \ dom (L), then we set
L(a) = oo. When using this convention, 0 - co = 0, while 0o = c0o+2 = 2+ 00 =
0+c0o=00+0=0c0 forall z > 0.

Rieffel’s motivation for the introduction of quantum compact metric spaces was, in
part, to provide a formal framework for certain approximations of noncommutative al-
gebras found in the literature in quantum physics. To this end, Rieffel introduced a first
noncommutative analogue of the Gromov-Hausdorff distance between quantum compact
metric spaces. The search for an analogue of the Gromov-Hausdorff distance applicable
to metric noncommutative geometry and possessing certain desirable properties, missing
from the very important first analogue, eventually led the third author to the discovery
of the Gromov-Hausdor{f propinquity.

The Gromov-Hausdorff propinquity is a complete metric on the class of quantum
compact metric spaces, up to full quantum isometries.



6 T.-M. Landry et al. / Advances in Mathematics 385 (2021) 107771

Definition 1.4 (/36]). Two quantum compact metric spaces (2, Ly) and (2B, Lg) are fully
quantum isometric if there exists a *-isomorphism 7 : %l — B such that Ly o = Lg.

The class map which sends a compact metric space (X, d) to the (classical) quantum
compact metric space (C'(X), Ly) is a homeomorphism from the Gromov-Hausdorff dis-
tance topology to the Gromov-Hausdorff propinquity topology. The Gromov—Hausdorff
propinquity thus provides a functional analytic description of the Gromov—Hausdorff
distance. An advantage of this presentation is that it opens up the possibility of defin-
ing the convergence of structures from other areas of noncommutative geometry, such
as modules (analogues of vector bundles), group actions, and even spectral triples. The
resulting metrics extend the Hausdorff distance to entire new classes of objects. OQur fo-
cus in this paper is on the spectral propinguity, a metric introduced by the third author
between certain spectral triples called metric spectral triples.

Definition 1.5 (//0]). A metric spectral triple (2, ##, D) is a spectral triple such that
the metric mkp, defined by Expression (1.1), metrizes the weak* topology on the state

space () of 2.

We note that if (%, 5#, D) is a metric spectral triple, then in particular, 2 must be
represented faithfully on 5#, namely for all a € %, if V€ € #° af =0, then a = 0.

The spectral propinquity is a metric between metric spectral triples, up to unitary
equivalence, which thus opens up the possibility of discussing approximations and per-
turbations of spectral triples, and in fact, is a metric on Riemannian structures and
their noncommutative analogues. As we shall see in this work, the spectral propinquity
induces a nontrivial topology on metric spectral triples.

Spectral triples over commutative C*-algebras also provide a new way to study the
geometry of certain singular spaces. A prime example is given by the construction of
spectral triples on certain fractals by the second author and his collaborators. In [29,30],
Lapidus initiated a program to apply ideas from noncommutative geometry to the study
of fractals. In [5], The second author, together with E. Christensen and C. Ivan, construct
a spectral triple on the Sierpinski gasket — a basic example for analysis on fractals. This
spectral triple allows one to recover the Hausdorff dimension and the Hausdorff measure
of the Sierpifiski gasket, and brings the tools of noncommutative geometry to bear on
fractal geometry. In particular, it is shown in [5] that the restriction of the metric induced
by Expression (1.1) to the space of points (i.e., the pure states) of the Sierpiriski gasket
is the geodesic distance on the Sierpinski gasket. Similar results are obtained in [5]
about a certain class of infinite trees and other quantum graphs. Other constructions
and discussions of spectral triples on fractals can be found in [14,6,7,3,2].

In [33], the second author and J. Sarhad extended the construction of [5] to more
general fractals, including the harmonic gasket introduced by Kusuoka and Kigami,
in [26,27] and [20]. In particular, the harmonic gasket is an example of a measurable
Riemannian geometry, with an appropriate notion of volume (the Kusuoka measure),
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Fig. 1. The Sierpinski gasket is a limit of graphs in the plane for the Hausdorff distance.

gradient, Laplacian, geodesic distance, and more, which makes it the fractal closest to
a manifold, even though it is not a topological manifold, let alone a differentiable one.
As we alluded to earlier, the spectral triples constructed in [5,33] also recover, again via
Expression (1.1), the geodesic distance on the harmonic and Sierpinski gaskets, and are
thus examples of metric spectral triples.

The authors of [33] also introduced a set of axioms under which their construction
and results continue to hold. The resulting geometric objects are called piecewise C!-
fractal curves in the present paper. Our own results will be established for this class of
fractal-type “manifolds”.

Now, fractals such as the Sierpinski gasket or the harmonic gasket are attractors
of certain iterated function systems, and are limits of certain natural, and easier to
understand, compact subsets of Euclidean spaces. Some approximations of these fractals
for the Hausdorff distance are in fact basic tools in their study. For instance, the Sierpinski
gasket is the limit, for the Hausdorff distance, of certain finite graphs in the plane; see
Fig. 1. A natural question arises:

Is the spectral triple constructed on certain fractals which are limits of certain natural
subsets of Euclidean spaces in [33] a limit, in some sense, of spectral triples on these
natural approximation sets?

This question is nontrivial since it first requires some notion of approximation for spectral
triples. Yet, the development of the spectral propinquity from functional analytic and
noncommutative metric geometry considerations provides us with the tool of the spectral
propinquity to address this question. Therefore, the core concept which enables us to
discuss the convergence of spectral triples is metric convergence.

In the process of precisely formulating our results, we were led naturally to introducing
the notion of an approzimation sequence (X, )nenw of a given piecewise C*-fractal-curve
X, relative to a parametrization of X; see Definition 2.8 below. Accordingly, our main
results can informally be described as stating that given any approximating sequence
(Xn)new of X, the sequence of corresponding spectral triples converges, in the sense of
the spectral propinquity, to the spectral triple associated with X.

In closing this part of the introduction, we point out that our work and methods
are naturally relevant to the study of analysis and probability theory on fractals, [4,17,
20-30,49,50], as well as to the physical and computational investigation of fractals and
random media [4,44,24,25,27,28 47 and the references therein. Indeed, fractal models
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of natural objects and phenomena (such as clouds, coastlines, mountains, rivers, trees,
plants, lungs, networks of blood vessels, lightning, galaxy clusters, etc) were developed
with the understanding that, from a physical point of view, these natural objects may not
truly be fractal, but can be well modeled by such a geometry up to a certain scale [44,47].
It is therefore important to investigate how well these geometries are approximated by
simpler finite graphs or piecewise smooth geometries.

Our work is organized in two main sections, which follow the natural path for the
construction of the spectral propinquity in [40]. First, we discuss metric convergence for
the class of fractals introduced in [33]. Following the original construction provided in
[5], we begin by giving detailed background on the Sierpinski gasket, as our first main
example and also because it serves as a motivation and an important test case. We
also discuss the fractal-like spaces from [33], which we call piecewise C-fractal curves.
Another important example of such spaces, besides the Sierpinski gasket, is the harmonic
gasket introduced by Kusuoka in [26,27] and Kigami in [20].

We then explain what we will mean by approximation stages for piecewise C!-fractal
curves, modeled after the natural approximations of the Sierpinski gasket by finite
graphs, a fact which also plays a key role in the harmonic and spectral analysis of fractals,
as well as in the study of diffusions (i.e., the analysis of a suitable analogue of Brownian
motion) and probability theory on fractals; see [4,17,27,22,21,24,2523,26,28,30,49,50].
Now, the metric we endow all these spaces with is the (intrinsic) geodesic distance, not
the restriction of the Euclidean distance to them — which is indeed different, in general.
We establish the convergence of the approximation stages to piecewise C'-fractal curves
for the Gromov—Hausdorff distance. As we discussed, this immediately implies a result
about convergence for the propinquity. However, in order to apply our framework to the
convergence of spectral triples, we need to provide a functional analytic proof, which
concludes this first main section (Section 2). This first section also includes the basic
definition of the Gromov—-Hausdorff propinquity.

Second, we prove that the spectral triples of [33] associated with piecewise C'-fractal
curves are limits, with respect to the spectral propinquity, of certain spectral triples
constructed on the approximation stages of these fractals. This implies, in particular,
that the spectral triples on the Sierpinski gasket [5] and on the harmonic gasket [33] are
limits of spectral triples on their naturally approximating graphs. In order to obtain this
result, we first recall the construction from [33], and introduce the spectral triples on
the approximation stages. We then follow the process from [40]. A metric spectral triple
consists of

* a quantum compact metric space,

e a Hilbert space with an extra norm defined on some dense subspace, given by the
graph norm of the Dirac operator,

« a *-representation of the quantum compact metric space on the Hilbert space,

e a group action of R on the Hilbert space obtained by exponentiating ¢ times the
Dirac operator.
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Each of these ingredients requires a form of convergence, each devised by the third
author, for different structures from noncommutative metric geometry. Of course, the
convergence of quantum compact metric spaces is defined by the propinquity. The con-
vergence of the Hilbert spaces with the graph norms of the Dirac operators of spectral
triples is given by the modular propinquity [43]. The convergence of the *-representations
in spectral triples is defined by the metrical propinquity [40]. Including an appropriately
defined notion of covariant metric propinquity [41], called the spectral propinquity [40],
we deduce the convergence of the spectral triples.

We close this introduction by providing notation which will be used throughout this

paper.

Notation 1.6. The set of natural numbers, denoted by IN, starts with zero: IN =
{0,1,2,...}. We write N = IN U {00}, where co ¢ N, with the order relation < such
that oo is the greatest element of N and the restriction of < to IN is the usual order of
IN.

Moreover, for any n € N, we set N, = {k e N: k <n}and N, = {k€ N: k < n}.

Notation 1.7. The norm of a normed vector space E is denoted by ||-||; if E is an inner
product space, then ||-|| ; is the norm induced by this inner product. If E = C(X) is the
C*-algebra of all C-valued continuous functions over a compact Hausdorff space X, then
Illc(x) is the supremum norm over X.

For any unital C*-algebra 2, we denote by .%(2) the state space of 2, i.e. the set of
all positive linear functionals of norm 1 over 2. In particular, by the Riesz—Radon rep-
resentation theorem, .%(C (X)), for X a compact Hausdorff space, is naturally identified
with the space of Radon probability measures over X.

The space of self-adjoint element {a € 2 : a* = a} of A is denoted by sa (A); if
2 = C(X) is the space of C-valued continuous functions on X, as above, then sa (2) is

the algebra of R-valued continuous functions on X.

Notation 1.8. The norm of a continuous linear endomorphism 7" on a normed vector
space E is denoted by ||T||| ; — so that we need not always refer to the Banach algebra

of such operators explicitly.

Notation 1.9. If (E, d) is a metric space, then Hausg denotes the Hausdorff distance [15]
on the space of all nonempty closed subsets of (E,d); see, e.g., [11-13,45]. If the space
E is a vector space endowed with a norm |||| z, then Haus) is the Hausdorff distance
for the metric induced on E by ||| 5.
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Fig. 2. The Sierpinski gasket.

2. Graph approximations of piecewise C'-fractal curves for the Gromov—Hausdorff
distance

2.1. The Sierpiriski gasket

The Sierpiriski gasket (see Fig. 2) SG, is a fractal, constructed as the attractor set
of an iterated function system (IFS) of affine functions of the plane. Specifically, let

1
'[)():(8),1)1:((1)) andw:(é).
2

We write Vo = {vo,v1,v2}. Let Ag1 = SGo be the boundary of the convex hull of Vj in
R? — i.e., Ap; is an equilateral triangle in the plane, whose edges have length 1. Let

LO - {AD,I}‘
We define three similitudes of the plane by letting for each j € {0, 1,2},

1
Tj:x€R2|—>§(x+vj)€IR2.

We will use an explicit construction of SG, as a limit of finite graphs in R?, defined
inductively. For all n € IN, n > 0, we set

L‘TL = {An,j :j - {1,..‘,371}},
where

o Apiijiran =T A, forall j € {1,...,3"} and r € {0,1, 2},
* Vnt1 = U,Z«:() TV,.
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For each n € IN, we define the set

4n
SGn=|J L. = UIAn,j.
P

We observe for later use that, by induction, for all n € IN:

(1) A, ; is an equilateral triangle whose edges have length 2%;

(2) the set of all vertices of the triangles in L, is Vy;
(3) if j € {1,...,3"}, then

3
Ay C U Api1a—-1)+r S0 (An;);

r=1

(4) 8Gy C 8Gn 11

(5) if j,k e {L,...,3"}, and j # k, then A, ; N A,, ; is empty or a singleton containing
the common vertex to both triangles;

(6) SG,, is path connected.

All of these observations above follow from the fact that affine bijections preserve
triangles, scale length (here, by %), and preserve intersections; they all can be proved by
induction.

Our construction implies the following key metric property:

1

Vn,m €N m>=n = Haus|_, (SGm,Vn) < 7

We now define the Sierpiriski gasket, using the notation of this section.
Definition 2.1. The Sierpinski gasket SG . is the closure of UnE]N SG..

We further define Voo = ey Vi

By construction, the Sierpinski gasket is compact. It can also easily be checked that
SG o is invariant under the map

2
XCR2w U T.X;
=0

so it is indeed the attractor of the iterated functions system (Tp,T1,T2) and is, in fact,
a self-similar set (see, e.g., [10]); namely,

2

r=0
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It is immediate from our construction that

1

Vn €N, Haus) ,(SGoo; Vi) < o0

where we have used Notation 1.9. The set V. is therefore dense in SG.,. We also note
that, by construction,

1

Vn € NN, Haus”,HRZ (Sgn,Sgoo) < 27;

(2.1)
hence, §G is the limit of (8G,)nen for Haus. .-

However, for each n € IN, we will work with the intrinsic metric on the set SG,,, which
is different from the restriction to SG,, of the metric of R?. Indeed, since for each n € N,
the set §G,, is path connected, we can define for any two z,y € 8§G,,,

dn(-/Ba y) =
inf {length(v) : v : [0,1] = 8G,,v(0) = z,v(1) = y,y continuous} .

Here and henceforth (see, e.g., [13,48]), for any natural number p > 1, and for any curve
in a compact subset X of R?, i.e., a continuous map 7 : [0, 1] = X, we define the length
of v by

length(~) =

k

sup Z [v(t;) = v(@js1)llge K EN0=2 <t1 <...<txg=1p,
Jj=0

allowing for the value oo for length(~y) (the curves with finite length are called rectifiable),
and where ||-||g, is the Euclidean norm on R?.

By the Hopf-Rinow theorem for length spaces [13,48], and since G, is path connected
and compact, there exists a continuous function 7 : [0, 1] — 8G,, which is a geodesic from
7(0) = z toy(1) = y; ie., forall t < ¢’ € [0,1], we have length(~|[t, ']) = d,, (v(t),v(t)) =
Alt —t'|, where A = length(~y). This last equality shows that « is injective. We will use
these observations in several proofs below.

In general, the canonical inclusion of §G,, into 8G . is not an isometry from (8G,,,d,,)
t0 (8@, doo ). For instance, we see that

oo ()2 o (1) -4 (s ()

This simple computation also shows that, of course, for any n € IN, the space (8G,,d,)
is not a metric subspace of R? (with its usual metric); namely, while 8§G,, is a subset of
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R2, the restriction to SG,, of the usual Euclidean metric on R? is not equal to d,,. It is
obvious, nonetheless, that

Vn € N’ Vr,y € SGn, ||.’L' - y”]E{Z < doo(xa y) < dn(‘r’y)

However, we make the following observation, which will prove helpful later in this
work.

Lemma 2.2. For all n € N, the metrics d,, and do, agree on V,,. In fact, any geodesic
between two elements of V,, in (8G ., ds) s also a geodesic in (8G,,d,).

Proof. As seen above, for any fix n € IN, and for all 5,k € {1,...,3"} with j # k, the
triangles A, ; and A, ; intersect at most at one point, which is then a common vertex
of both triangles. Thus, a continuous curve from a point in A,, ; to a point A,, ; must
pass by a vertex of each of these two triangles, since 8G,, = Uj; FAVS

Let v,w € V,, be two distinct vertices of §G,,. If there exists j € {1,...,3"} such that
v,w € Ay j, then it is immediate that doc(v,w) = dn(v,w) = 27" because v and w are
joined in 8G and &G, by an edge of a triangle in L,,, and as a result of the triangle
inequality.

Now, suppose v € A, ; and w € A, 1, for some j,k € {1,...,3"} with j # k. Let ~y
be a rectifiable curve in SG,, from v to w which is not contained in SG; so there exists
¢ € Vi \ 8G,, also within the range of . Now, ¢ lies in the convex hull of A,, ,, for some
r € {1,...,3"}. Thus, v had to pass by two vertices a,b of A, ,: if r = j or k, then one
of these vertices is v or w, and somehow we must exit A, ,, which can only occur via
a vertex. Otherwise, we entered and exited A, ,, which can only occur via a vertex. It
follows that the part of v between a and b is then longer than the straight line [a, b] and,
hence, ~ is not a geodesic from v to w.

This completes the proof of the lemma, by contraposition. 0O

Without any obvious canonical space to isometrically embed (8G,,, d,,) and (SG ., dwo)
into, we will discuss the notion of convergence in the sense of the Gromov-Hausdorff
distance GH. Our key assumption is that, for every n € N, the spaces (V,,,d,,) and
(Vns do) are actually the same metric space, by Lemma 2.2. It is then easy to check that
(with the use of Notation 1.9)

Hausg, (8Gn, Vo) < 27" and Hausg,, (8Goc, Vi) < 277 (2.2)
so that

GH((SQn: d'n): (Sgoo’ doc)) < Hausdn (Sgna Vn) + GH((Vna dn)’ (Vru d'oo))
+ Hausy_ (Vio, SGo)
g 2—1’L + 0+ 2—1’3, — 2—n+1’
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and hence,

Em GH((SGn, dn), (SGao, doo)) = 0. (2.3)

T—r 00

The picture painted in this section can be fruitfully generalized to include such inter-
esting examples as the harmonic gasket, as we shall see in the next subsections.

2.2. Piecewise C'-fractal curves

The Sierpinski gasket is an example of a class of compact length subspaces introduced
in [33] as examples of spaces for which a natural spectral triple may be constructed.

For the following definition, the endpoints of a curve v are v(0) and (1). A curve
is said to be a concatenation of a sequence (7y;);en of curves when there exists a strictly
increasing sequence (t;)jen in [0, 1], with o = 0 and lim;_,o £; = 1, such that, for each
j € NN, the curve «y restricted to [tj,t;4+1] is the map £ € [0,1] — ~; ( =l (P The

tit+1—1;
concatenation of finitely many curves is defined similarly, by using a finite subdivision

t0=0<t1<...<tk=10f[0,1].

Definition 2.3. A piecewise C'-fractal curve X is a compact path connected sub-
set of R™ such that, for some sequence (C;)jen of rectifiable C'-curves in R™ with
lim; 00 length(C;) = 0, the following assertions hold:

(1) X = the closure of |J,. range (C;),

(2) there exists a dense subset B of X (for the topology induced by the geodesic distance
on X) consisting of endpoints of the curves in the sequence (C;);jen and such that
for all p € B and q € X, one of the geodesics from p to ¢ in X is a curve obtained
as a concatenation of a possibly finite subsequence (C});en.

The sequence (C;) ew is called a parametrization of X.

The Sierpiniski gasket is a piecewise C!-fractal curve given by a parametrization using
the edges of the triangles A, ,, foralln € N and r € {1,...,3"}.

Theorem 2.4 ([33, Proposition 2]). The Sierpiriski gasket SG, is a piecewise C'-fractal
curve, with parametrization (R;)jen given, for each j € N, by either of the two affine
functions from [0,1] onto

o the bottom edge of A, ;, if j = »(n,r) for some (n,r) € E,
o the right edge of A, ;, if j = »(n,r) + 1 for some (n,r) € E,
o the left edge of A, ;, if 7 = s(n,7) + 2 for some (n,r) € 5,
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with
E:={(n,r)eN*:neN,re{0,...,3" —1}}
and s»x(n,r):=3 ( Z;é 3k 4 r), for all (n,r) € Z; by convention x(0,0) = 0.

Convention 2.5. We will refer to the parametrization of the Sierpinski gasket SG in
Theorem 2.4 as the standard parametrization of SG.

Besides the Sierpifiski gasket, another very important example of a piecewise C-
fractal curve is given by the harmonic gasket, which is a fractal with what can be called
a “measurable Riemannian geometry”, an idea initiated and developed by Kusuoka [26]
and later, by Kigami [23]; see also [29,30,17].

The natural Dirichlet form over the Sierpinski gasket is the pointwise limit, on some
dense subspace D of C(SG), of the sequence of quadratic forms (£,) defined, for

all n € IN, and for all functions v € C'(8G ), by

a0 =(3) X o) -

P,gEV,
p~q
n

nelN?

Thus, there exists a operator A, defined on D and valued in C(S8G, such that
YueD E(u)=(Au,u).

As € is indeed the Dirichlet form associated with the analogue of the Brownian motion
on the Sierpinski gasket (see [4,26,27] and references therein), the operator A can be
seen as an analogue of the Laplacian for the Sierpinski gasket. Kigami then proved in
[21,22] that, given any function f : Vj — R, there exists a unique function u € C(SG
such that Au = 0 and 4|0 = f — the analogue of the Poisson problem for the Sierpifiski
gasket always has a unique solution.

In particular, there exist unique harmonic functions u;, ug, us on SG4 such that

1ifj =k,
u;(vk) :{ !

0, otherwise.

We note that w1 + uz + us = 1 on SG, by the uniqueness of the solution to the
Poisson problem on §G..; hence, {u;,us2,u3} is a partition of unity in C(8G.,). The

uy(x 1
P:2e8G, — ? ((UQE.’L'%) — (1))
uz(x) 1

function
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Fig. 3. The harmonic gasket.

is a continuous injection on 8G.,, and thus an homeomorphism from the Sierpinski
gasket SG, onto its image in the affine subspace of R?,

{(z,y.2) eR* 1z +y+2=1},

viewed as a subset of R? By definition, the harmonic gasket HG (see Fig. 3) is the
image of SG by @ (see [20]):

We recall that, by [33], we have the following result.
Theorem 2.6 (/33, Proposition 3]). The harmonic gasket HG~ is a piecewise C'-fractal

curve, with parametrization (® o R;)
of the Sterpiriski gasket SG .

jens where (1) en is the standard parametrization

Convention 2.7. The sequence (®PoR;);cn is called the standard parametrization of HG .

Theorem 2.6 makes use, in particular, of the existence of a continuously differentiable
(i.e., C1) geodesic between any two points z,y in SG... Such a geodesic is usually not
unique, and is not C?. In fact, there are typically infinitely many such geodesics.

In this work, we are concerned with certain approximations of piecewise C*-fractal
curves by finite unions of their constituent rectifiable curves, in a manner which includes
and generalizes the spaces SG,, approximating §G ..

Definition 2.8. Let X be a piecewise C!-fractal curve with parametrization (C;);en, as
in Definition 2.3. Then, an approzimation sequence of X compatible with (C;)jen is a
strictly increasing function B : N — IN such that, for every € > 0, there exists N € IN
such that if n > N, and letting
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By
e Xy = Uj=1 range (C}),

+ V,, bethe set of all endpoints {C;(0),C;(1) : j =1,...,B,} of the curves Ry,...,Rpg
» d, be the geodesic distance on X, (in particular, X,, is path connected),

)

the following properties hold:

(1) the restriction of do to V,, x V,, is dp,
(2) Hausg, (V,, X,) <e.

Of course, geometrically, and using the notation of Definition 2.8, we mean to approx-
imate the piecewise C'-fractal curve X by the sequence of subsets (X, )nen of X. But
it will be very helpful to keep track of the constituent curves.

Our prototype for Definition 2.8 is given by the following theorem.

Theorem 2.9. The sequence (% (3”*1 — 1)) is an approrimation sequence for the
Sterpiriski gasket SGo, compatible with its standard parametrization.

3ntl g

Proof. Let B, = 35— = 32;;1 37. For each n € IN, the set Uf;l R; is the set
8Gr. Thus, Condition (1) of Definition 2.8 is satisfied, in light of Equation (2.2), and
Condition 2 follows from Lemma 2.2. 0O

We can then use the approximation sequence for the standard parametrization of SG,
in order to obtain an approximation sequence of the harmonic gasket. The approximation
of HG will be obtained by means of the following sets:

Convention 2.10. For each n € IN, we set HG,, = ®(5G,,).

Theorem 2.11. The sequence (% (3”*1 - 1))nEIN 18 an approximation sequence for HG o
adapted to the standard parametrization of HG .

Proof. Let € > 0. There exists N € IN such that for all n = N, the length of ¥ o R, is
strictly less than e. Let n > max{N, 2 (37*! —1)}.

By construction, §G,, = U}il A, ; and thus, HG, = Ui’; ®(A,, ;). By definition,
if x € HG,, then z € ® (A, ;) for some j € {1,...,3"}. Hence, for some j > N, the
point x lies on ran (® o R;), whose length is strictly less than ¢ > 0. It follows that
dn(z,v) < g, for any endpoint v of Rj, i.e., for any element of V},. This proves that
Hausg, (Va, HGr) < €.

Now, let =,y € V,,. If 2,y € ®(A,;), for some j € {1,...,3"}, then, letting E be
the edge of A, ; from ® '(z) to ®!(y) (parametrized as an affine map), we have by
[33, Proposition 2] that ® o E is a geodesic from z to y in §G . It is then, of course, a
geodesic in (HG,,d,) as well; so that d,(z,y) = length(® o E) = doo(z,y).

Otherwise, let v be some injective rectifiable curve from v to w. Let a = ®~! o,
which is an injective rectifiable curve in §G ., between two vertices in §G,,. As discussed
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in Lemma 2.2 and owing to our work on the Sierpiniski gasket, there exists a subdivision
0=ty <ty <...<tp<tpp1 =1o0f [0,1] such that

vVt e [0,1], af(f) is a vertex in §G,, <= Jj € {0,...,k+1}, t=t;,

since there are finitely many vertices in §G,,, and since « is injective, it does not cross
the same vertex twice. We now define a new curve in SG... For each j € {0,...,k}, let
E; be the affine parametrization of the edge from a(¢;) to «(t;+1) in the triangle of Ly,
containing both of these vertices. We then set

t—t;

b1~

),ﬁteﬁﬁg+¢

Let v/ = ® 0. The curve «' is rectifiable, from x to ¥, contained in HG,, by construction,
and the length of 8 between 8(¢;) = ~(t;) and B(t;j+1) = ¥(t;+1) is the smallest among
all curves between these two vertices, again by [33, Proposition 2]; so that

length(v') < length(y).

Applying the above construction to a geodesic 4 from z to y in HG.., we obtain a
geodesic of HG,, between z and y, with the same length. Thus d,(z,y) = dx(z,y), as
desired. This completes the proof of the theorem. O

The pattern observed in Theorems 2.9 and 2.11 is abstracted in the following hypoth-
esis, which will be assumed in the remainder of our work.

Hypothesis 2.12. Let FC, be a piecewise C*-fractal curve with parametrization (C;),en;
so that, in particular,

FCo = closure of U range (C).
JEN

We denote its geodesic distance by d.,. We also denote the set of all the endpoints of
the curves C; (j € IN) — which we call the vertices of FCoo — by Veo.

Let (B, )nen be an approximation sequence for FC. adapted to the parametrization
(Cj)jen, and set By, = oo. For each n € IN, we write

B,
FCn = U range (C;).

=0

We also denote the geodesic distance on FC,, by d,. Last, we let

Vn = {Cj(O),CJ(l) j S {0,...,Bn}},
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which we call the set of vertices of FC,,, and we set V,, = UjE]N V; — whose elements
we refer to as the vertices of FC.

For every n € IN, we denote the Lipschitz seminorm on FC,, induced by the geodesic
distance d,, by L,,.

Finally, for every j € IN, we also denote the length of C; by A;.

2.3. Metric convergence

Hypothesis 2.12 implies that the sequence (FCp,dn)new converges to (FCx, ds) for
the Gromov—Hausdorff distance. By Definition 2.3, if we let £ > 0, there exists N € IN
such that, if n > NN, then the following properties hold:

(1) (Vp,d,) and (V,,d) are the same metric spaces,
(2) Hausq, (FCp,Vy) < 5.

Moreover, by Definition 2.8, the set V,, is dense in (FCoo,ds), and since V,, is the
increasing union of the sequence (V;,)nen, there exists N’ € IN, such that if n > N', then
Hausg,, (FCoo, Vo) < §. Thus, if n > max{N, N'}, then we have the following properties:

e Hausy (FCu,Vy) < §, since Vy» C V,,, by construction,
» Hausgy, (FCpn, V) < 5.
Therefore,

GH((FC.,,dy), (FCoo,doo)) < Hausy, (FCp, Vi) + GH((Va, dp)s (Vi, dso))
+ Hausy__ (V,,, FCuo)

€ £
<-+0+ - =5
2+ -I—2 €

so that
lim GH((FCp, dn), (FCoo,doo)) = 0.

In order to apply our techniques to the convergence of spectral triples, it is necessary to
bring our previous observation about metric convergence within the functional formalism
of the propinquity — as the spectral propinquity is built on this formalism. We begin
by recalling the basic construction of the Gromov-Hausdorff propinquity; we refer to
[36,35,37] for the details.

In order to motivate our construction, we begin by recalling the construction of the
Gromov-Hausdorff distance [12,13]. The Gromov-Hausdorff distance between two com-
pact metric spaces (X,dx) and (Y,dy) is the infimum, over all choices of a compact
metric space (Z,dz) which contain an isometric copy of (X,dx) and (Y,dy), of the
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Hausdorff distance, Haus,, [15], between X and Y in Z. The first step is to generalize
the idea of isometrically embedding two compact metric spaces into a third one, and of
course, this requires a notion of quantum isometry.

Definition 2.13 (/35/). A tunnel (®,L,m,m) from (A1,L;) to (A2, L) is a quantum
compact metric space (D, L) and, for each j € {1,2}, a *-epimorphism 7, : ® — 2; such
that

Va € dom (L;), Lj;(a)=inf{L(b):b € sa(D),n;(b) =a}.

We then associate a nonnegative number to every tunnel, which is different from
the quantity used in the construction of the Gromov-Hausdorff distance (though still
using the Hausdorff distance), in order to accommodate the more general framework of
quantum compact metric spaces.

Definition 2.14 (/37]). The extent x (7) of a tunnel T = (D,L,m,m) from (™U;,L;) to
(A, Ly) is the number given by

x (1) = max Hausyy (Z(D),{pom:p e L (A)}).
je{1,2}

The propinquity is thus defined as follows.

Definition 2.15 (/35,37]). The (dual) propinquity between two quantum compact metric
spaces (U, L) and (B, Lx) is given by

A*((U,La), (B, Lg)) = inf {x (7) : 7 is a tunnel from (2, Ly) to (B,Lxs)}.

We refer to [38] for the discussion of several important variations of the construction
of the propinquity; Definition 2.15 refers to the so-called dual propinquity, which we will
simply refer to as the propinquity in this paper.

We will use the following definition in this paper. For a class C' and an equivalence
relation ~ on C, a function d on C x C is called a metric up to ~ (or a pseudo-metric,
in short) if the following three properties hold:

(1) Vz,y € C, d(z,y) =0 if and only if z ~ y,
(2) Vz,y e C, d(z,y) =d(y,z),
(3) Vz,y,ze C, d(z,z) < d(z,y) +d(y, 2).

Theorem 2.16 (/35]). The propingquity is a complete metric, up to full quantum isometry,
on the class of quantum compact melric spaces. Moreover, it induces the same topology
as the Gromov-Hausdorff distance on the class of classical compact metric spaces.

It then follows immediately from [35] that the following result holds.
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Theorem 2.17. If Hypothesis 2.12 holds, then

lim A* ((C(FCoo), Lao), (C(FCn), L)) = 0.

n—oo

Proof. By [35], we have:

0 <A ((C(FCux); L), (C(FCn), L))
< GH((FCp,dp), (FCoo,doo)) —> 0;

hence, our conclusion. We note for the record that, in fact, the propinquity restricted
to classical compact metric spaces and the Gromov—Hausdorff distance are topologically
equivalent. 0O

Of course, the purpose of introducing the Gromov—Hausdorff propinquity is to give
a functional analytic translation of the convergence of (FCy),cy to FCo- Next, we
actually provide a proof which depends on the specific assumptions about approximation

sequences of piecewise C''-fractal curves, rather than just on the more general argument
from [36], since the construction below will be more helpful for our purpose.

Alternate proof of Theorem 2.17. If f € C(FC,,), for some m € IN, and if n < m, then

f|n is the restriction of f to V.
Let € > 0. By Definition 2.8, there exists Ny € IN such that if n = Ny, then:

Hausg, (FC,,V,) <e.
By Definition 2.3, there exists N1 € N, such that if n > Np, then
Hausq (FCoo, V) < €.

Let N = max{Np, N1 }. Fix n > N and set 2, = C(FCux) ® C(FCp).
We now let a > 0 as well. For any (f,g) € 2, we set

1
M a(f.9) = mx { Lo, L0 % 110 = alnlerr, | (2.0

It is an easy exercise to check that (2,, M, ) is a quantum compact metric space.
We now check that

Tn,ee = (Q‘ln, Mn,cx, Pocs pn) (25)

is a tunnel, where p, : (f,9) € U, = f € C(FC) and py, : (f,9) € A, — g € C(FC,).
Of course, po, and p,, are *-epimorphisms.
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If f e C(FCsx,R) and Loo(f) = 1, then f|n is also 1-Lipschitz since (V,,,d..) and
(Vn,dy) are equal, by Definition 2.8. By McShane’s extension theorem for real-valued
Lipschitz functions [46], and by Theorem 3.2, there exists ¢ € C(FCy,R) such that
gln = f|n, and L,(g) = 1. Thus, M,, o(f,g) = 1. In other words, L, is the quotient of
My on C(FCx) Via ps. We caution the reader that, in general, f restricted to FC,, is
not 1-Lipschitz for d,,.

The same reasoning applies to show that the quotient of M,, , on C(FC,,) via p,, is
equal to L,. Therefore, 7, « is a tunnel from (C(FCux), Loc) to (C(FCy),Lyn). Next, we
compute its extent.

First, let ¢ € S(C(FCx)). For each z € FC, let §, be the Dirac point mass at
z. By the Krein—Milmann theorem, there exists a finite subset F' C FCs such that, if
0 =3, cptads, for some (t;)zer € [0, 1]¥ with > zcrtz =1, then

mky__ (p,0) < o

By assumption, for each x € F, there exists v, € V,, such that d(z,v,;) < €. Let
¥ = Y ,cptzdy,. By construction, ¢ can be trivially identified with a state of C(V,,)
and also with a state of C(FCy).

Now, let (f,g) € sa(2,) be such that M,, ,(f,g) < 1. Thus, Loo(f) < 1, L,(g9) < 1
and, for all v € V,,, we have |f(v) — g(v)| < a. Therefore, we have successively:

lo(f) = (gl = le(f) = 0(F)| + 16(F) — ()] + |[¥(f) — ¥(9)]
sa+ Z txlf(m) - f("'—’x)‘ + Z tmlf(q-’a:) - g('Ur)| <2a+e

zeF zeF

The same reasoning applies with the roles of FC., and FC,, interchanged. Hence, it
follows from Definition 2.14 that

X (Tno) € 20+ €.

Consequently, in light of Definition 2.15, and since « > 0 is arbitrary, we have that

N ((C(FCoo)s Loo), (C(FCh), L)) < X (Tn,a) S &
This completes our alternative proof of Theorem 2.17. O
The tunnel we constructed in the proof of Theorem 2.17 is the main ingredient for ob-

taining an appropriate estimate on the spectral propinquity between the spectral triples
constructed in [33] on piecewise C*-fractal curves.
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3. Convergence of spectral triples
8.1. Spectral triples for piecewise C'-fractal curves

Christensen, Ivan and Lapidus defined in [5] a metric spectral triple on C'(8G ). Then,
Lapidus and Sarhad extended, in [33], the construction from [5] to arbitrary piecewise
C'-fractal curves.

It is the purpose of this paper to show that the metric spectral triple constructed in
[5] is a limit of natural metric spectral triples on §G,,, and more generally, to show that
given a compatible approximation sequence for some parametrization of a piecewise C-
fractal curve, the metric spectral triples from [33] are limits of spectral triples of finite
unions of C'-curves from the chosen parametrization. We now turn to the construction
of these spectral triples.

Remark 3.1. We note that the construction of the spectral triples on the Sierpinski gasket
[5], and, more generally, on piecewise C-fractal curves [33], provides a noncommutative
version (and extension) of the notion of a fractal string, introduced and studied by the
second author and his collaborators in, for example, [34] and [28,32,31]. It would be
interesting, in a later work, to establish explicit connections between the present work
and the theory of complex dimensions of fractal strings and higher—dimensional fractals
developed in those references; see, e.g., [34,31].

The construction begins with the construction of a spectral triple on an arbitrary
C'-rectifiable curve, much as in [5]. First, let us recall the construction of the standard
spectral triple on the circle.

Let CP be the unital Abelian C*-algebra of all C-valued continuous functions f over
[—1,1] such that f(—1) = f(1):

CP = {f € C(-1,1)) : /(-1) = F(D)}.

The Gelfand spectrum of CP is, of course, homeomorphic to the unit circle in C; we will
identify it with the image T of [—1,1] under the map

z € [—1,1] — exp(inz).
We now define a spectral triple on CP, using the Gelfand—Naimark—Segal representa-

tion of CP for the Haar state. Explicitly, let _# be the Hilbert space closure of CP for
the inner product

1
(fag)ECP'_) fg.
/
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As usual, we identify f € CP with the (bounded) multiplication operator by f on _Z.
For each k € Z, let

er 1 t € [—1,1] — exp(inkt).

Clearly, e, € _#. We define @ as the closure of the linear extension of the map defined
as follows:

Vk € Z, {@er = mkes.

The operator @ is self-adjoint with spectrum {7k : k € Z}. In particular, @ has a compact
resolvent.

A quick computation now shows that f € _# is in the domain dom (@) of @ if and
only if there exists a necessarily unique g € _# such that

T

Voe L1, f@)=10)+ [ ot)ds

0

i.e., f is absolutely continuous on [—1,1], with almost everywhere derivative g. Fur-
thermore, in this case, @f = ig. From this, it follows that for all & € Z, we have
@, flex = (@f)ex. We thus deduce that, if we let

Lr: f € CP = |[[[@, fllll ,  (allowing for the value c0),
then
VfeCP, Lp(f) =1@fllpw(_1, (also allowing for the value o).

From this, we conclude that f € dom (Lt) if and only if @(f) is essentially bounded
on [—1,1]. Equivalently, via the Lebesgue differentiation theorem, f € dom (Lv) if and
only if f is Lipschitz for the usual metric on [—1,1] — with the obvious identification of
7 as a closed subspace of L?([—1,1]). In turn, this implies that

(CP, #,®) is a metric spectral triple
since {f € CP : f(0) = 0,Lr(f) < 1} is compact in C([—1, 1]) by Arzéla—Ascoli theorem.

However, we want to understand the metric induced by Lt on the Gelfand spectrum T
of the C*-algebra CP. Let z,y € [0,1). It is easy to see that

mky, (exp(2imz), exp(2iny)) =
sup {|f(2) = f(u)| : f € CP, £(1) = 0, D) e o, < 1}
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If f € CP with Ly(f) <1 and f(1) =0, and thus f(—1) =0, then
|f(z) = F(y)| < min{|z -y, 2 - [z — 9|}
and therefore,
Ve,y € [-1,1], mk,(exp(2inz),exp(2iny)) = |z —y| (mod1), (3.1)

where equality in Equation (3.1) is achieved by using continuous piecewise affine func-
tions.

Thus, the metric induced by mk;, makes the Gelfand spectrum of CP isometric to
the unit circle in T endowed with its geodesic distance; i.e., the distance between two
distinct points is the smallest of the lengths of the two arcs between these points.

We now use the spectral triple (CP, _#, @) in order to construct a spectral triple on the
unit interval [0, 1]. As the construction of spectral triples on piecewise C''-fractal curves
involves possibly countable direct sums of interval spectral triples, we will in particular
avoid having the eigenvalue 0 in the spectrum of our interval Dirac operator, so that a
countable direct sum of such operators will still have a compact resolvent.

If f € C([0,1]), then the map ¢t € [—1,1] — f(|t|) is in CP. Let w be the faithful
*-representation of C([0,1]) on _# defined by

Viel(0,1]), vEe 7, w(f)f:te[=1,1] = f([t))E(E).

We also set ;b =@+ % and dom (ﬁﬁ) = dom (@), noting that ],’é is a self-adjoint operator

with spectrum Sp (¢) ={m(k+3):ke€Z} Itis easy to check that (C([O, 1)), f,ﬁ)
is a metric spectral triple over C([0,1]) which induces the usual metric on [0,1].

For each n € IN, we now construct our spectral triple over FC,,, where we use Hy-
pothesis 2.12. We let

Ty = @fgof
and
dom (D,) = {(fj)fgo €, :Vje{0,...,B,} & €dom (ﬁ) } :

For each j € IN, we also let ¢; : C(FCs) — C([0,1]), which sends f € C(FCy) to
foCjin C[0,1]. Of course, g; is a *-epimorphism. We then set, for all f € C(FC,):

V€ = (§)jenj<n, € Hn, Ta(f)E = (@(foC))E) enm i<n, -

Finally, using the same notation as above, we set:
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v& = (&j)jE]N,ng" € dom (Dn)a Dn& = (%p{y) 1
7

JEN,J<Bn

where A; is the length of C}, for every j € IN.

It is then easily checked that (C(FC.), 7., Dy,) is a spectral triple on C(FC,,). We will
next show that this spectral triple is metric and that mkp,_ restricted to FC,, coincides
with the geodesic distance d,. Our theorem includes [5, Theorem 8.13] (case n = o)
and extends it to all n € IN, which we need in order to be able to formulate and establish
our approximation results.

Theorem 3.2. We assume Hypothesis 2.12. Let n € N. If f € FC,,, then
f€dom(L,) < fdom(D,) C dom (D)
and, for all f € dom (L,,), we have
Ln () = Dn, mn (Il 5, -
In particular, the restriction of mkp, to FC, is the geodesic distance d,,.

Remark 3.3. It is not sufficient to show that the restriction of mkp is d,, in order to
conclude that Theorem 3.2 holds — see, for instance, [1], where two different L-seminorms
on the continuous functions over the Cantor set give the same metric on the Cantor set
but not on the state space.

Proof of Theorem 3.2. Fix n € IN. By construction, since for all f € C(FC,), such that
fdom (D,,) C dom (D),

I[Dns fllll 7, = sup
JEN,j<B,

5]

we conclude that for all k& > 0, the following two assertions are equivalent:

I,

* I[Dn, f]l“jffn <k,
o forall j €{0,...,B,}, the restriction of f to the curve C; is k-Lipschitz for d,,.

We first work with n € IN.

First, let f € C(FCy) such that [[|[Dy, 7 (f)]|ll 4, < 1.

Furthermore, let z,y € C; for j € {0,...,B,}. Finally, let ¢,t' € [0,1] such that
C;(t) = z and C;(t") = y. We then conclude that

[f o Ci(t') = [ o Ci(R)] < Aslt — 1| = du(C5(1), G5 () = dan(z, y).

Indeed, H|[¢,w(f ) Cj)]mﬁ? < A and Cj is a geodesic in FC,, and thus also in FC,,.
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Now, let =,y € FC,. Let v be a geodesic from z to y in FC,, and recall that
is injective. Let A = length(y) = d,(z,y). Since V,, is finite, there exists a finite set
F C[0,1] such that y(t) € V <= t € F. Write F = {t1,...,t,}, with t; < ... < t,.
Let to be such that v(ty) = x and let ¢,,1 be such that y(t,,1) = y.

Moreover, let j € {0,...,r}. Since, by construction, v|(¢;,%;;1) does not contain a
vertex, it follows by continuity and the intermediate value theorem that (t;) and y(¢;41)
belong to the same curve Cj, for some h € {0,..., B, }. Thus, |f(v(t;j4+1)) — f(7(E;))] <
dn(y(t),v(tj+1)). We now have successively:

|f(x) — Z [F(Y(t541)) = F(v(E5))]

< Z dn(Y(t;), 7(t541))

Jj=0

=3 Athgr —te] = XD (b1 — tr) = Altrr1 — to)
j=0 j=0

Hence, we conclude that for all z,y € FC,,, we have

|f(z) = f(Y)| < du(z,y).

Since z,y € FC, were arbitrary, we have shown that L,(f) < 1. By homogeneity, it
follows that for all f € C(FC,), we have

Ln(f) < [Py 7 ()] ] s, -
Now, let f € C(FC,) with L,(f) < 1. Furthermore, let j € {0,...,By}, and let

z,y € C;. By definition, there exists ¢,t' € [0,1] with C;(¢) = z and C;(¥') = y. We then
have that

17 (z) = f(y)| = [f o C;(t) — o C;(t')]
dn(C;(1), C5(t)) < At —¥'].

Thus, f o C; is a A;-Lipschitz on [0, 1], and therefore, }

}msw(focj)]mj < Aj. Hence,

|H [%ﬁ,w(f ) Cj)] H’f < 1. Since j is arbitrary in {0,..., B, }, we conclude that

D, m, = su
D, 7o ()]l s, oS

speueal] <
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Consequently, for all f € C(8G,,), we have shown, as desired, that

For n = co, we can proceed as follows.

First, let f € C(HGoo) with [[|[[Dec, Moo (f)]lll 5o, < 1. Thus, for all n € IN, we then
have that, [[[(Dn, 7 (F)]ll 5, < 1.

Let v,w € V., therefore v,w € Vy for some N. We have seen that d.(v,w)
dn(v,w). If Leo(f) < 1, then L,(f) < 1 and, as above, |f(v) — f(y)] < dn(v,w)
doo (v, w). By continuity, since V,, is dense in HG,, we conclude that |f(z) — f(y)|
doc(z,y), for all 2,y € FCys. Hence, Loo(f) < 1.

If f is 1-Lipschitz on (HGu,de), then, for any j € NN, its restriction to Cj,
is 1- Lipschitz on (Cj,d;) — indeed, dow < d;j so Lip;(f) < Lip,(f) < L. Thus,
H| [ foCj) ”H 1. By construction, it follows that L. (f) < 1.

By homogenmty, we conclude that [||[Doc, oo (f)]lll 52, = Loo(f), for all f € C(FCx).
This completes the proof of our theorem. 0O

N

Spectral triples contain other geometric data besides the metric information, such as
how to recover from it the Hausdorff measure and the Hausdorff dimension of SG..,
via a Dixmier trace construction. We refer to [5] for some of these properties in the
case of C(8G o, 7%, D). (See also, e.g., [2,9,14,25,29,30] for related results in various
contexts.)

We conclude this section by adopting several additional conventions. If n < m, we
then identify .7, with a subspace of 7%, via the linear embedding

£, 1§ < By
(Ef)jew,stn ’ .
0, otherwise o
JEN,j<Bm

Moreover, if f € C(FC,,) and & € %, we then write f¢ for m, (h){, where h is the
restriction of f to FC,. In particular, we will dispense with the notation m, in the
remainder of this paper whenever no confusion may arise.
3.2. Modular convergence
Let (2, 5#, D) be a metric spectral triple. By [40], if we define DN and Lp as follows,
V¢ € dom (D), DN(§) = [|€]l 5 + [ D€l

where dom (D) is the domain of D, and

Va € dom(Lp), Lp(a)=|[[D,alll s,
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where

dom (Lp) = {a € sa () : adom (D) C dom (D), [D, a] is bounded},
then the tuple

qvb (%, 5#,D) = (5#,DN,C, 0,2, Lp) (3.2)
is an example of a quantum metrical vector bundle, in the following sense.
Definition 3.4 (/43,59]). A quantum metrical vector bundle
(#,DN, B, Ly, A, Ly)

is given by two quantum compact metric spaces (2, Ly) and (B, Ls), a right Hilbert
$B-module which also carries a left A-module structure, and a norm DN defined on a
dense 2A-submodule, dom (DN), of .# such that the following properties hold:
(1) Vw € dom (DN), |w|_, < DN(w),

(2) {w € dom (DN) : DN(w) < 1} is compact in ||-|| ,,
(3) for all w,n € .#, denoting b = (w,n) , € B, we have

max{ng (bzb*) Lo (b ;zb)} < 2DN(w)DN(p)

(we refer to this inequality as the inner Leibniz inegquality),
(4) for all a € dom (L) and w € dom (DN), we have

DN(aw) < (llally + La(a)) DN(w).
(we refer to this inequality as the modular Leibniz inequality).

The norm DN is called a D-norm.
When (.#,DN,*B, Ly, C,0) is a metrical quantum vector bundle, the tuple

(Jﬂ, DN? %7 I—iB)
is called a metrized quantum vector bundle.
Remark 3.5. When 7 is a Hilbert space, it can be seen as a right module over C trivially,
by setting w -z = zw for all z € C and w € 7, since C is Abelian. We will typically

write scalars as usual on the left when working with Hilbert spaces, while implicitly
considering them as right modules when part of a metrical quantum vector bundle.



30 T.-M. Landry et al. / Advances in Mathematics 385 (2021) 107771

While in [39], more general forms of the modular and inner Leibniz inequalities are
allowed, Definition 3.4 is the important special case which we use when working with
spectral triples.

We use the following natural notions of morphisms between Hilbert modules, which
will underlie the various notions of isomorphisms for quantum metrical vector bundles.

Definition 3.6. Let 2, B be two unital C*-algebras. A left module morphism (II, ) from
a left 2-module .# to a Ift B-module .4 is given by the following data:

¢ a unital *-morphism 7 : A — B,
e a linear map Il : # — .4 such that

Vae®, VYwe.#, I aw)=n(a)lI(w).

The module morphism (II, 7) is said to be surjective when both II and 7 are surjective
maps, and it is said to be an isomorphism when both II and 7 are bijections.

A right module morphism is defined similarly.

A Hilbert module morphism (II, 7) from a right 2-Hilbert module .# to a right %B-
Hilbert module .4 is a module morphism when

Vw.§ e, (IIw),11(E)) 4 = (W, &) 4

We refer to [43] for examples of such a structure and for its motivations.
Our next step in proving the convergence of (C(FCy,), 5., Dn) to (C(FCux), #5, Do)
is to establish the convergence of their associated metrical quantum vector bundles.

Notation 3.7. To begin with, for each n € IN, we consider %%, as a C-Hilbert module
endowed with the following D-norm:

V¢ € dom (D), DNy(§) = [|]l e, + 1Dnéll s, -

Thus, by [40], (#%,,DN,, C,0) is a metrized quantum vector bundle. We next compute
the modular propinquity between (4, DN,,, C,0) and (4., DNy, C,0).

The third author defined the modular propinquity in [43,39] by extending the notion
of a tunnel between quantum compact metric spaces to the notion of a tunnel between
metrized quantum vector bundles.

Definition 3.8 (/39]). Let (.#;,DN’,2l,,L;) be a metrized quantum vector bundle, for
7 €{1,2}. A modular tunnel (D, (111, m), (II3, m2)) is given by

(1) a metrized quantum vector bundle D = (42, DN’, D, Lp),
(2) a tunnel (D, Ly, m, 7o) from (A, L) to (As, La),
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(3) for each j € {1,2}, (IL;, ;) is a surjective Hilbert module morphism from & (over
2,) to .#; such that

Vw € .#;, DN(w)=inf {DN'(n) : I;(n) = w}.

The extent of a modular tunnel is computed just like the extent of the underlying
tunnel between quantum compact metric spaces, as we see in the following definition.

Definition 3.9 (/39]). The extent, x (7), of a modular tunnel 7 = (D, (II, ), (II, m2)),
with D = (£2,DN’,®, Lyp), is the extent of the tunnel (D, Lo, 71, 72)-

The modular propinquity is then defined along the same lines as the propinquity.

Definition 3.10 (/43,39]). The modular propinguity, A™9 (A, B), between two metrized
quantum vector bundles A and B is the nonnegative number given by

A9 (A,B) = inf {x (7) : 7 is a modular tunnel from A to B}.
We now record a few fundamental properties of the modular propinquity.

Theorem 3.11 (/43,39]). The modular propinguity is a complete metric, up to the equiv-
alence according to which two metrized quantum vector bundles (.#,DN,%, Ly) and
(A ,DN',B, L) are fully isometrically isomorphic if and only if there exists a Hilbert
module isomorphism (II,w) such that

e Lpom=Lg,
« DN’ oIl =DN.

Note that in the definition of a tunnel, we allow — as we must — Hilbert modules
over C*-algebras which are not necessarily equal to C. In fact, if we restricted tunnels
between Hilbert spaces to only involve C as a C*-algebra, then their extent would always
be null, but this is obvious since such a tunnel can only be between full isometric metrized
quantum vector bundles.

We next construct our modular tunnels and obtain an estimate on the modular propin-
quity between (.7, DN, C,0) and (5%, DNy, C,0), for all n € IN.

Lemma 3.12. Assume Hypothesis 2.12. Then, the following limit holds:

lim A*™ ((s#,, DN, C,0), (#, DNy, C,0)) = 0.

n— 00

Proof. Let € > 0. There exists NV € IN such that if j > N, then A; < %7, by Condition
(1) of Definition 2.3.
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Let £ = (&) en,j<n, € dom (Dy). Using the Hilbert basis (e;)rcz of # of eigenvec-
tors ofjb, we write £ = >,z tj kek, for (tx)rcz € #%(Z) and for all j € IN.
We now obtain the following lower bound:

1D, =D || Jb@

JEN

- j( ;) s

JEN kEE

> Y35 (ke g) et

j=N kEZ

If DNoo(€) < 1, then we conclude from the above expression that

DD Il ﬁzaz <Y I, kl2 +3) <L

j2NKEZ 1 i=NkEZ

Thus, if DNo (€) < 1, and since (k + 1)? > § for all k € Z, we deduce that

S lel = Y Y il

j=2N+1 J2N+1k€eZ

1 2
<4 3 X (ktg) whal
n2N+1keZ

< g2,

Let n = N + 1. We set, for (£,n) € % © 4,

Tn(fﬂ?) = max {DNoc(g)a DNn(n): é ”f - "7||ffx,} .

Let I : (&€,n) € 50, & 35, — £ € 3, and 11, : (€,1) € 50, D F6, — 0 € F,. We
begin by proving that the quotient of T,, for 11, is DN, and the quotient of T,, for II,,
is DN,,.

If n € #&, with DN,,(n) < 1, we then let £ = 7. It is immediate, by definition, that

oo(n) = DNy (n) <1 and [ — ] 5, =0;so that T,,(£,7) <1

If £ € 5, with DN (§) < 1, we then let n be the orthogonal projection of £ onto
#€,. Then, again by construction, DN,,(n) < DN (&) < 1. Moreover, our choice for N
guarantees that || — 7|, < €; so that T,,(§,n) < 1. Hence, as claimed, T,, quotients
to both DN, and DN,,.

We now prove that T, is a D-norm for .# = 52, @ 5, seen as a C & C-Hilbert
module via the following action and inner product:
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‘V’(Z, w) €ECo® ‘D? V(tf, 7?) € ./ﬂ, (‘f? ’?) : (z? w) = (257 ”“—”7)
and
V&), (€, n') e, (), € 0)0=(EE) 5o mn) ).
To this end, we endow C @ C with the L-seminorm Q given by
1

V(iz,w) eCpC, Qz,w)= E|z —wl.

It is immediate that (C @ C, Q) is a quantum compact metric space.
Let us turn to several needed properties of T,. As the maximum of three lower semi-

continuous functions, T, is lower semicontinuous as well. Hence, its unit ball is closed.
We also easily see that

V(§,n) € A & Ho,  Tn(€m) 2 max{|l€]| s, s [10ll 5, } = 1M, 20, -

Furthermore,

{(&n) e s :Tn(€n) <1}
C {€ € # : DNuo(€) < 1} x {0 € £, : DN,y () < 1};

so that the unit ball of T,, is closed in a compact set, and hence is compact.

Moreover,
QUEN: € ).) = L |(E:E) e, — (17|
= 6 om, — 17|
< (e =1 |+ (€=
< V€l Tal€'s1) 1 g, Tl6sm)
< 2To (& Tl ).

Hence, the inner Leibniz property holds as well; see Assertion (3) of Definition 3.4.

We thus have proven that u, = (4%, ® #,,T,,C® C,Q) is a modular tunnel from
(#4,,DN,,, C,0) to (#%,DN., C,0).

It is immediate to compute that the extent of (C & C, Q) is equal to €. Thus, the
lemma is proven. O

We remark that, of course, A*((C,0),(C,0)) = 0. However, to give an idea of what
occurs in the previous proof, note that if we replace @ with 6@ for § > 0 but very small,
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then T,, will not satisfy the Leibniz identity. Therefore, the Leibniz condition is what
enforces the rigidity which then makes the distance between (.5#%,, DNy, ) and (.#4,, DN,,)
NoNZero.

We next compute how far are the actions of C'(FC,) on 5, and of C(FC,,) on 4%,.
This is accomplished by bringing together the tunnels from the proof of Theorem 2.17
and from Lemma 3.12. The only thing left to check is another form of the Leibniz
property. Indeed, the modular propinquity can be easily extended to metrical quantum
vector bundles, as we now explain.

Definition 3.13 (/59]). Let A9 = (.#;,DN_4,, 27, L7,B7,L;), for j € {1,2}.
A metrical tunnel (1,7') from Al to A? is given by the following data:

(1) amodular tunnel 7 = (D, (61,01), (62,03)) from (.#1,DN_g4,, %, L') to (#2, DN _4,,
A2, L?), where we write D = (£?,DN, D, Ly),

(2) a tunnel 7/ = (D’,L’, 7!, 7w2) from (B, L) to (B2, Ly),

(3) £ is also a D'-left module,

(4) Vwe #,¥d € @', DN(dw) < (L'(d) + [|d|| 5, )DN(w),

(5) forall j € {1,2}, the pair (77, ©7) is a left module morphism from the left ®’-module
2 to the left 2A/-module ;.

Definition 3.14 (/39/). The extent, x (7,7’), of a metrical tunnel (7, 7’) is given by

x (1,7") = max {x (1), x (1)} .
Definition 3.15 (/39/). The metrical propinguity, N*™*(A,B), between two metrized
quantum vector bundles A and B is the nonnegative number given by

A*™(A,B) = inf {x (1) : 7 is a metrical tunnel from A to B}.

Theorem 3.16 ([59/). The metrical propinquity is a complete metric, up to full isometry,
on the class of metrical quantum vector bundles.

We are now able to prove the following useful result.

Theorem 3.17. The following limit holds:

lim A*™*((.,,DN,,C,0,C(SG,),Ly,), (%goo, DN, C,0,C(8G ), LOO)) = 0.
n—roo
Proof. We use the framework and notation of the proof of Theorem 2.17 and Lemma 3.12
— in particular, for all n € IN, the D-norm T,, on .# = 5, @ 5, and the associated
modular tunnel y,. We also use the tunnels 7, ,, from (C(FC,),L,) to (C(FCx): L),
built by using the L-seminorms M,, .
Let £ > 0 be given, and let N € N be such that for alln > N,
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o X (1) <e,
» Hausg, (FCn, Vo) < § and
e Hausg (FCoo,Vn) < §.

Using the alternate proof of Theorem 2.17 given toward the end of Section 2, we see
that the extent of the tunnel Tn,s = (Apn, My, ¢ <y Py Poo) 1Is at most equal to 32, We let 7,
be the tunnel Tn,%.

Let f € 5a(C(FCx)) and g € sa (C(FC,)). Let £ € 5%, and n € 5,. We compute
successively:

T,.(f€, gn) = max {DNm(fE), DN,.(g7), é € — gnlwx}

(Ifllezeoy + Lo (£))DNoo (§),
S max ¢ (lglloze,) + Ln(9))DNa(n),

2115E = gnll e,
(ICf, I, + M, (f,9))C(E,m),
s ma"‘{ 176 = gnlr. }

Now, by construction, since n € #,, then fr, meant to stand for 7o (f)7n, is well
defined (as %, is a subspace of #2,) and moreover, 7. (f)n = m,(f,)n (written as
fn = fan), where f, is the restriction of f to FC,, by construction of 7, and 7.

We thus compute successively:

1
;nfs—gnufm (£ =l + 151 = gmllee.)

(£ E =)l e, + 11 — g1l 5,)

(‘nl»—l m\p—n (‘n\»—l

(£ =Ml + 1(Fr = 9)ll 522,
1
< fllere.) Tnl&m) + . 1fr = 9llcre,y 1l s, -

If x € FC,, then there exists v € V,, such that ds(z,v) < %5 and d,(z,v) < %5, and
therefore, we obtain the following upper estimate:

[fn(z) — g(@)| < |fulv) — g(v)| + [ fnlz) — f(0)] + [g(z) — g(v)]
=|f(v) = g(v)| +|f(x) = f(v)| + |g(z) — g(v)|

< 7 (Mo 5 (£,9) + Lao(f) + Lu(9))

< EMﬂ,%(f: g)
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Thus,

1
156 = anlle, < (1 lowren) + Mas (£,9)) Tal6,m).

In conclusion, we have shown that

To(f& 9n) < (1(f,9)llay,, +Mu,z (f,9)) Tn(€,m),

as desired.
Therefore, we have constructed a metrical tunnel whose extent y satisfies the following
estimate:

£= maX{X (.U"n):X (Tn,i)} <e
This concludes the proof of the theorem. 0O

Let us review our situation. In the previous section, we easily observed that
(FCh,dn)nen converges in the Gromov-Hausdorff distance to (FCux,ds). Moreover,
we proved this convergence within the functional analytic framework of the propinquity,
in preparation for the study of the convergence of spectral triples over these spaces.

Spectral triples give rise to certain kind of modules over quantum compact metric
spaces, called metrized quantum vector bundles — these modules are Hilbert spaces
(i.e., Hilbert modules over C) endowed with the graph norms of the Dirac operators. We
proved in Lemma 3.12 that, indeed, these modules converge in the sense of the modular
propinquity, which is an extension of the construction of the propinquity to metrized
quantum vector bundles, available to us thanks to the functional analytic framework.

In fact, spectral triples also include the action of a quantum compact metric space
on their associated metrized quantum vector bundles. The resulting objects, dubbed
metrical quantum vector bundles, also converge, per Theorem 3.17, for yet one more
extension of the modular propinquity to metrical quantum vector bundles. Each of these
extensions of the original propinquity consists in following the model laid out by the
construction of the propinquity A*, but also requires more complex diagrams in order to
define tunnels. Interestingly, the only quantity we ever need to compute are distances
between quantum compact metric spaces — the rigidity of the required diagrams in the
definition of tunnels is sufficient to define well-behaved metrics.

Now, the following natural question arises. Given any two spectral triples, we could ap-
ply the definition of the metrical propinquity to their associated metrical vector bundles,
as we did here. This defines a pseudo-metric on spectral triples, which we temporarily
write as

X((Q[I’M:Dl): (mZa%: DZ)) = A*mEt(qu (Q[lajﬁyDl)a qu (m%%’DZ)):



T.-M. Landry et al. / Advances in Mathematics 385 (2021) 107771 37

between any two metric spectral triples (2, 241, D) and (2o, 5, D»); see the comment
after Definition 2.15 for the definition of a pseudo-metric. Is it a metric, up to a natural
equivalence? In [40], the third author proved that, indeed,

A((, 54, Dy), (A3, 56, D)) = 0

if and only if there exists a unitary operator U from 5% to % which conjugates the
*_representations of 2, and A, on, respectively, #4 and %, and such that

U |Dr|U = | D2, (3.3)

where, for all j € {1,2}, the operator | D,| is the absolute value of the operator D, defined
via the continuous functional calculus for (possibly unbounded) self-adjoint operators.
However, we see that more information must be captured if we want to recover the
spectral triples up to a unitary equivalence. We would like to replace Equation (3.3)
with the stronger expression U*D U = D,. This is the subject of the definition of the
spectral propinquity, which builds itself on top of the metrical propinquity by including
covariant quantities. This is the subject of the next subsection.

3.3. Convergence of spectral triples

If (A, 52, D) is a spectral triple, then D induces a strongly continuous action of R on
J€ by unitaries, defined by

Vte R, U(t)=exp(itD),

using the functional calculus applied to the self-adjoint operator D.

Given two spectral triples, we have discussed in the previous subsection how to make
sense of their module structures being close; the last point to address is how to measure
how close the actions of R they induce are.

The covariant version of the propinquity was introduced in [41]. The covariant modular
propinquity was then introduced in [40], and it is the tool needed to define the spectral
propinquity. A full description of the covariant modular propinquity is not necessary for
our purposes; instead, we restrict our attention to the sort of metrical bundles obtained
from spectral triples and the actions of R described above in Equation (3.2).

Let us assume that we are given two metric spectral triples (2,;,54,D;) and
(A, %, Dy). In Equation (3.4), we have defined the metrical quantum vector bundles
qvb (2,54, D) and qvb (s, 3, D5), associated respectively with the metric spectral
triples (241,741, D1) and (U, #3, D2). Let P = (7,7’) be a metrical tunnel between
qvb (24,54, D1) and qvb (s, 5, Dy), such as the ones built in Theorem 3.17.

In particular, let us write 7 = (P, (@1, ¢1), (P2, ¢2)) and note that by Definition 3.13
for metrical tunnels, 7 is a modular tunnel between (#7, DNy, C, 0) and (4%, DN,, C,0),
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where DN, and DNy are, respectively, the graph norms of D and Ds. Furthermore, let
us write P = (#,DNp, D, Lp).

Since D; and D; are self-adjoint, we can define two strongly continuous actions of R
by unitaries on .74 and 7% by letting

vie{1,2}, VteR, U!=exp(itD;).

The spectral propinquity is defined by extending the metrical propinquity of Defini-
tion 3.15 to include the actions Uy and Us.

With this in mind, let € > 0 and assume that x (7) < e. Let us call a pair (g1, ¢) of
maps from R to R an e-iso-iso, for some € > 0, whenever

Vi e{l,2}, Vr,yze€ [—i, i] s Isi(x) +55(y) — 2| — [z +y) — se(2)]] <&,
and ¢1(0) = «2(0) = 0.

As discussed in [411], such maps can be used to define a distance on the class of proper
monoids, but for our purpose, as we only work with the proper group R, the definition
simplifies somewhat. In fact, we only recall the definition so that we may properly define
the spectral propinquity below: for our purposes, the only iso-iso map we will work with
is simply the identity of R.

Thus, suppose that we are given an e-iso-iso (s1,¢) from R to R, as above. We call
(1,7',61,62) an e-covariant metrical tunnel.

The e-covariant reach of (7,¢1,<2) is then defined as follows:

max  sup inf sup  sup Ul (t €10, (w Uk ¢ Tlp(w ‘
U2} omi  Eer* gl wet (U7 (1)€, T (w)) ey — (UF(s*(2)) @) e
DN’ (¢)<1 DN*(¢")<1 DNp (w)<1

We define the e-magnitude (7, 7,1, 2|€) of an e-covariant tunnel (7, ¢, ¢2) to be the
maximum of the extent of 7, the extent of 7/, and the e-covariant reach of (7, ¢y, 52).
The spectral propinguity

Aspec((ml’%l’Dl)’ (le’jbwz’DZ))

is the nonnegative number
min § -, inf{e > 0 : 3 e-covariant metrical tunnel 7, p(7|e) <ep.

We refer to [41,39] for a discussion of the fundamental properties of this metric, as
a special case of the covariant metrical propinquity, including a discussion of sufficient
conditions for completeness (on certain classes).

We record the following property of this metric.
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Theorem 3.18 ([/0]). The spectral propinquity NP*¢ is a metric on the class of metric
spectral triples, up to the following coincidence property: for any metric spectral triples

(1,571, DY) and (A%, 52, D?),
NP (A, 7, DY), (A, %, D?)) =0
if and only if there exists a unitary map V : 381 — 52 such that
VD V* = D,
and
Ady =V ()V* is a *isomorphism from 2, onto As,

where (as is custornary) we identify A1 and o with their images by their representations
on ' and A2, respectively. In particular, the *-isomorphism from A onto A? imple-
mented by the adjoint action of V is a full quantum isometry from (A, |||[D1,])|||%,l
onto (22, |[[D2, ||| ,z=)-

We are now able to conclude this section with the formal statement, and the proof,
of our main result in this paper.

Theorem 3.19. If Hypothesis 2.12 holds, then

lim A< ((C(FCy), #ay D) (C(FCox), H#ic, Doc)) = 0.
Proof. We use in this proof the notation of Theorem 2.17, Lemma 3.12 and Theorem 3.17.
For each t € R and n € NN, we set

U, (t) = exp(iDy,),

viewed as an operator on J%,, where 5%, is seen as a subspace of F.

Let £ € #,. we note that D,§ = D&, so that Uy, (t)§ = U (¢)§, for all £ € R.

With this in mind, we see that if (£,n) € 4, @ 5, with C,(§,n) < 1, then, in
particular, |[§ — 7|, < e. Therefore, we obtain the following estimate, valid for all
teR:

[Un(£)€ = Uoo ()]l e, < U ()€ = Uso()€| . + U0 ()€ — Une (1) s
< NUn(t)§ = Uss (D)€l s, + 1€ = 1ll 52,
<0+4e=

Since, obviously, (idg, idg) is a O-iso-iso, the above computation shows, by the Cauchy-
Schwarz inequality, that the metrical tunnel (u,,, 7,,) has covariant reach at most e.
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Since the extent of (y,,7,) is also at most €, we conclude, as desired, that

NPE((C(FCn), H0,, Dn), (C(FCu), #5, D)) < €.

This concludes the proof of our main theorem. O

4.

Future directions

We conclude this paper with several suggestions for future directions of research, based

upon the results and methods presented here:

e The metrical propinquity is known to be complete, and so the conditions for com-

pleteness of the covariant propinquity are discussed in [42]. It is therefore natural to
construct spectral triples on fractals sets described as limits of simpler sets by using
the completeness of the propinquity. Thus, the methods described here provide a test
case for this broader goal.

The propinquity (in its different versions) is a tool from noncommutative geometry
and is defined on classes of noncommutative C*-algebras and their modules. It there-
fore opens up the possibility of discussing the notion of a noncommutative fractal. To
this end, a closed class of quantum compact metric spaces, or even a complete class
of metric spectral triples, could be endowed with a finite collection of maps which
act as contractions for the corresponding propinquity. We would then typically use
the completeness once more in order to obtain a limit, by the Picard fixed point
theorem, which will be noncommutative if all the elements in our class are. A very
simple such example can be obtained by working with matrix-valued functions over
compact subsets of the plane — it is easy to define L-seminorms for these spaces so
that, for any fixed d € IN\ {0}, the noncommutative C*-algebra of d x d matrix-valued
continuous functions on the Sierpinski gasket is indeed the limit, for the propinquity,
of the sequence of C*-algebras of d X d matrix-valued continuous functions over the
approximating sets §G,,. It would be very interesting to find and investigate richer
examples, including noncommutative fractals constructed on a simple C*-algebra.
Future progress on the properties of the spectral propinquity can be applied to the
current work in order to devise new methods to compute certain quantities attached
to fractals and related to spectral triples, such as gleaning new information about
the associated spectral zeta functions, and connections between convergence for the
propinquity and spectral complex dimensions (see Remark 3.1 above for references
on complex dimensions, especially [31,34]). Moreover, we will discuss in a future
work how the present framework can be used to discuss the convergence of the
energy forms on the pre—fractal approximations to the Sierpinski gasket and to the
harmonic gasket.

The primary purpose of the third author in introducing the propinquity and its vari-
ants was to construct quantum field theories by constructing algebras of observables
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by approximations, using the completeness of the propinquity. A fascinating possi-
bility to be explored is the construction of a mathematically rigorous quantum field
theory over the Sierpinski gasket and other piecewise C!-fractal curves.

* One of the second author’s key motivations in [28-30] was to eventually be able
to define and study a suitable notion of a “fractal manifold” and of a “fractal (as
well as noncommutative) space-time”, along with the associated moduli spaces, by
analogy with general relativity and the approach to quantum physics via Feynman
path integrals [16]. (See also [47].) Examples of such fractal manifolds should include
piecewise C'-fractal curves and, in particular, the Sierpirfiski gasket and the harmonic
gasket. The techniques and results developed and obtained in this work, together, in
particular, with the work in [29,30,5,33] and [23,17], should help realize this long-term
goal.
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